- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则
的值为( )



A.7 | B.8 | C.6 | D.9 |
唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔,唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史.某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位;kg)数据,将数据分组如下表:

(1)在答题卡上完成频率分布表;
(2)重量落在
中的频率及重量小于2.45的频率是多少?
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间
的中点值是
作为代表.据此,估计这100个数据的平均值.

(1)在答题卡上完成频率分布表;
(2)重量落在

(3)统计方法中,同一组数据常用该组区间的中点值(例如区间


如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩,已知甲组数据的平均数为18,乙组数据的平均数为16,则
的值分别为( )



A.8,4 | B.8,5 | C.5,8 | D.8,8 |
某家电公司根据销售区域将销售员分成
,
两组.
年年初,公司根据销售员的销售业绩分发年终奖,销售员的销售额(单位:十万元)在区间
,
,
,
内对应的年终奖分别为2万元,2.5万元,3万元,3.5万元.已知销售员的年销售额都在区间
内,将这些数据分成4组:
,
,
,
,得到如下两个频率分布直方图:

以上面数据的频率作为概率,分别从
组与
组的销售员中随机选取1位,记
,
分别表示
组与
组被选取的销售员获得的年终奖.
(1)求
的分布列及数学期望;
(2)试问
组与
组哪个组销售员获得的年终奖的平均值更高?为什么?













以上面数据的频率作为概率,分别从






(1)求

(2)试问


在某次高中数学竞赛中,随机抽取90名考生,其分数如图所示,若所得分数的平均数,众数,中位数分别为
,
,
,则
,
,
的大小关系为( )








A.![]() | B.![]() | C.![]() | D.![]() |
从某食品厂生产的面包中抽取
个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表:

(1)在相应位置上作出这些数据的频率分布直方图;
(2)估计这种面包质量指标值的平均数
(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于
的面包至少要占全部面包
的规定?”

质量指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |

(1)在相应位置上作出这些数据的频率分布直方图;
(2)估计这种面包质量指标值的平均数

(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于


近年来“双十一”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某商家为了准备2018年双十一的广告策略,随机调查1000名淘宝客户在2017年双十一前后10天内网购所花时间,并将调查结果绘制成如图所示的频率分布直方图.

由频率分布直方图可以认为,这10天网购所花的时间
近似服从
,其中
用样本平均值代替,
.
(Ⅰ)计算样本的平均值
,并利用该正态分布求
.
(Ⅱ)利用由样本统计获得的正态分布估计整体,将这10天网购所花时间在
小时内的人定义为目标客户,对目标客户发送广告提醒.现若随机抽取10000名淘宝客户,记
为这10000人中目标客户的人数.
(i)求
;
(ii)问:10000人中目标客户的人数
为何值的概率最大?
附:若随机变量
服从正态分布
,则
,
,
,
.

由频率分布直方图可以认为,这10天网购所花的时间




(Ⅰ)计算样本的平均值


(Ⅱ)利用由样本统计获得的正态分布估计整体,将这10天网购所花时间在


(i)求

(ii)问:10000人中目标客户的人数

附:若随机变量






德化瓷器是泉州的一张名片,已知瓷器产品
的质量采用综合指标值
进行衡量,
为一等品;
为二等品;
为三等品.某瓷器厂准备购进新型窑炉以提高生产效益,在某供应商提供的窑炉中任选一个试用,烧制了一批产品并统计相关数据,得到下面的频率分布直方图:

(1)估计该新型窑炉烧制的产品
为二等品的概率;
(2)根据陶瓷厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:
根据以往的销售方案,未售出的产品统一按原售价的
全部处理完.已知该瓷器厂认购该窑炉的前提条件是,该窑炉烧制的产品同时满足下列两个条件:
①综合指标值的平均数(同一组中的数据用该组区间的中点值作代表)不小于
;
②单件平均利润值不低于
元.
若该新型窑炉烧制产品
的成本为
元/件,月产量为
件,在销售方案不变的情况下,根据以上图表数据,分析该新型窑炉是否达到瓷器厂的认购条件.






(1)估计该新型窑炉烧制的产品

(2)根据陶瓷厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:
| 一等品 | 二等品 | 三等品 |
销售率 | ![]() | ![]() | ![]() |
单件售价 | ![]() | ![]() | ![]() |
根据以往的销售方案,未售出的产品统一按原售价的

①综合指标值的平均数(同一组中的数据用该组区间的中点值作代表)不小于

②单件平均利润值不低于

若该新型窑炉烧制产品



为了解一家企业生产的某类产品的使用寿命(单位:小时),现从中随机抽取一定数量的产品进行测试,绘制频率分布直方图如图所示.

(1)假设同一组中的每个数据可用该组区间的中点值代替,估算这批产品的平均使用寿命;
(2)已知该企业生产的这类产品有甲、乙两个系列,产品使用寿命不低于60小时为合格,合格产品中不低于90小时为优异,其余为一般.现从合格产品中,用分层抽样的方法抽取70件,其中甲系列有35件(1件优异).请完成下面的列联表,并根据列联表判断能否有
的把握认为产品优异与系列有关?
参考数据:
参考公式:
,其中
.

(1)假设同一组中的每个数据可用该组区间的中点值代替,估算这批产品的平均使用寿命;
(2)已知该企业生产的这类产品有甲、乙两个系列,产品使用寿命不低于60小时为合格,合格产品中不低于90小时为优异,其余为一般.现从合格产品中,用分层抽样的方法抽取70件,其中甲系列有35件(1件优异).请完成下面的列联表,并根据列联表判断能否有

| 甲系列 | 乙系列 | 合计 |
优异 | | | |
一般 | | | |
合计 | | | |
参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:

