- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两个班数学兴趣小组成绩的平均值及方差

①A班数学兴趣小组的平均成绩高于B班的平均成绩
②B班数学兴趣小组的平均成绩高于A班的平均成绩
③A班数学兴趣小组成绩的标准差大于B班成绩的标准差
④B班数学兴趣小组成绩的标准差大于A班成绩的标准差
其中正确结论的编号为( )

①A班数学兴趣小组的平均成绩高于B班的平均成绩
②B班数学兴趣小组的平均成绩高于A班的平均成绩
③A班数学兴趣小组成绩的标准差大于B班成绩的标准差
④B班数学兴趣小组成绩的标准差大于A班成绩的标准差
其中正确结论的编号为( )
A.①④ | B.②③ | C.②④ | D.①③ |
甲、乙两个班级各随机选出15名同学进行测验,成绩的茎叶图如图所示:则甲、乙两班的最高成绩各是___,从图中看,___班的平均成绩较高. 

为探索课堂教学改革,江门某中学数学老师用传统教学和“导学案”两种教学方式,在甲、乙两个平行班进行教学实验。为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如下茎叶图。记成绩不低于70分者为“成绩优良”。

(Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;
(Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
(附:,其中
是样本容量)
独立性检验临界值表:

为了了解年段半期考英语的测试成绩,我们抽取了九班学生的英语成绩进行分析,各数据段的分布如图(分数取整数),由此估计这次测验的优秀率(不小于80分)为()


A.0.32 | B.0.056 | C.0.56 | D.0.032 |
某市正在全面普及数字电视,某住宅区有2万户住户,从中随机抽取200户,调查是否安装数字电视.调查的结果如下表所示,则估计该住宅区已安装数字电视的户数是( )


A.5 500 | B.5 000 |
C.8 000 | D.9 500 |















| 关注 | 不关注 | 合计 |
青少年 | ![]() | | |
中老年 | | | |
合计 | ![]() | ![]() | ![]() |
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成


为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为 .
下面是60名男生每分钟脉搏跳动次数的频率分布表.
(1)作出其频率分布直方图;
(2)根据直方图的各组中值估计总体平均数;
(3)估计每分钟脉搏跳动次数的范围.
分组 | 频数 | 频率 | ![]() |
[51.5,57.5) | 4 | 0.067 | 0.011 |
[57.5,63.5) | 6 | 0.1 | 0.017 |
[63.5,69.5) | 11 | 0.183 | 0.031 |
[69.5,75.5) | 20 | 0.333 | 0.056 |
[75.5,81.5) | 11 | 0.183 | 0.031 |
[81.5,87.5) | 5 | 0.083 | 0.014 |
[87.5,93.5] | 3 | 0.05 | 0.008 |
(1)作出其频率分布直方图;
(2)根据直方图的各组中值估计总体平均数;
(3)估计每分钟脉搏跳动次数的范围.
已知样本容量为30,在样本频率分布直方图(如图)中,各小长方形的高的比从左到右依次为2∶4∶3∶1,则第2组的频率和频数分别为()


A.0.4,12 | B.0.6,16 | C.0.4,16 | D.0.6,12 |