- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(Ⅰ)估计该组数据的中位数、众数;
(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);
(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:
(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
(ii)每次赠送的随机话费和对应概率如下:
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.
附:
,
若Z〜N(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.

(Ⅰ)估计该组数据的中位数、众数;
(Ⅱ)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94);
(Ⅲ)在(Ⅱ)的条件下,有关部门为此次参加问卷调査的市民制定如下奖励方案:
(i)得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
(ii)每次赠送的随机话费和对应概率如下:
赠送话费(单元:元) | 10 | 20 |
概率 | ![]() | ![]() |
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加.问卷调查获赠的话费,求X的分布列和数学期望.
附:

若Z〜N(μ,σ2),则P(μ-σ<Z<μ+σ)= 0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.
甲乙两人同时生产内径为
的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:
) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
从生产的零件内径的尺寸看、谁生产的零件质量较高.


甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
从生产的零件内径的尺寸看、谁生产的零件质量较高.
某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数、众数、极差分别是( )


A.24,33,27 | B.27,35,28 | C.27,35,27 | D.30,35,28 |
2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(1)估计该组数据的中位数、众数;
(2)由频率分布直方图可以认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求
;
(3)在(2)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
(ⅰ)得分不低于
可获赠2次随机话费,得分低于
则只有1次;
(ⅱ)每次赠送的随机话费和对应概率如下:

现有一位市民要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列和数学期望.
附:
,
若
,则
,
.

(1)估计该组数据的中位数、众数;
(2)由频率分布直方图可以认为,此次问卷调查的得分




(3)在(2)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
(ⅰ)得分不低于


(ⅱ)每次赠送的随机话费和对应概率如下:

现有一位市民要参加此次问卷调查,记


附:

若



近年来城市“共享单车”的投放在我国各地迅猛发展,“共享单车”为人们出行提供了很大的便利,但也给城市的管理带来了一些困难,现某城市为了解人们对“共享单车”投放的认可度,对
年龄段的人群随机抽取
人进行了一次“你是否赞成投放共享单车”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

(
)求
,
,
的值.
(
)在第四、五、六组“赞成投放共享单车”的人中,用分层抽样的方法抽取
人参加“共享单车”骑车体验活动,求第四、五、六组应分别抽取的人数.
(
)在(
)中抽取的
人中随机选派
人作为领队,求所选派的
人中第五组至少有一人的概率.


组号 | 分组 | 赞成投放的人数 | 赞成投放的人数占本组的频率 |
第一组 | ![]() | ![]() | ![]() |
第二组 | ![]() | ![]() | ![]() |
第三组 | ![]() | ![]() | ![]() |
第四组 | ![]() | ![]() | ![]() |
第五组 | ![]() | ![]() | ![]() |
第六组 | ![]() | ![]() | ![]() |

(




(


(





某高校进行社会实践,对
岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在
岁,
岁年龄段人数中,“时尚族”人数分别占本组人数的
、
.
(1)求
岁与
岁年龄段“时尚族”的人数;
(2)从
岁和
岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在
岁内的概率。





(1)求


(2)从




某高校进行社会实践,对
岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到各年龄段人数的频率分布直方图如图所示,其中在
岁、
岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.
请完成以下问题:
(1)求
岁与
岁年龄段“时尚族”的人数;
(2)从
岁和
岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队,求领队的两人年龄都在
岁内的概率.



请完成以下问题:
(1)求


(2)从




为了调查观众对某热播电视剧的喜爱程度,某电视台在甲、乙两地各随机抽取了8名观众作问卷调查,得分统计结果如图所示:

(1)计算甲、乙两地被抽取的观众问卷的平均得分;
(2)计算甲、乙两地被抽取的观众问卷得分的方差;
(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.

(1)计算甲、乙两地被抽取的观众问卷的平均得分;
(2)计算甲、乙两地被抽取的观众问卷得分的方差;
(3)若从甲地被抽取的8名观众中再邀请2名进行深入调研,求这2名观众中恰有1人的问卷调查成绩在90分以上的概率.
广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2017年某交社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们的年龄分成6组
后得到如图所示的频率分布直方图.

(1)根据广场舞者年龄的频率分布直方图,估计广场舞者的平均年龄;
(2)若从年龄在
内的广场舞者中任取2名,求选中的两人中至少有一人年龄在
内的概率.


(1)根据广场舞者年龄的频率分布直方图,估计广场舞者的平均年龄;
(2)若从年龄在


一组数据的平均数是3.9,方差是0.96,若将这组数据中的每一个数据都乘以10再加1,得到一组新数据,则所得新数据的平均数和方差分别是( )
A.40,96 | B.39,96 | C.40,9.6 | D.39,9.6 |