- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:


(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的
的值;
(Ⅲ)从阅读时间在
的学生中任选2人,求恰好有1人阅读时间在
,另1 人阅读时间在
的概率.


(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;
(Ⅱ)求频率分布直方图中的

(Ⅲ)从阅读时间在



网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题.

(1)求表中的n,中位数落在哪组,扇形统计图中
组对应的圆心角为多少度;
(2)请补全频数分布直方图;
(3)该校准备召开利用网络资源进行自主学习的交流机会,计划在
组学生中随机选出两人进行经验介绍,已知
组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图或列表法求抽取的两名学生都来自九年级的概率.

(1)求表中的n,中位数落在哪组,扇形统计图中

(2)请补全频数分布直方图;
(3)该校准备召开利用网络资源进行自主学习的交流机会,计划在



一所中学共有4 000名学生,为了引导学生树立正确的消费观,需抽样调查学生每天使用零花钱的数量(取整数元)情况,分层抽取容量为300的样本,作出频率分布直方图如图所示,请估计在全校所有学生中,一天使用零花钱在6元~14元的学生大约有________人. 

某大学随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,则这20个班有网购经历的人数的众数为( )


A.24 | B.35 | C.37 | D.48 |
在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示.

(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人.已知选手甲的成绩为85分钟.若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性.试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.

(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人.已知选手甲的成绩为85分钟.若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性.试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
如图是根据某校10名高一学生的身高(单位:cm)数据画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,则这10名学生身高数据的中位数是( ).


A.161 | B.162 | C.163 | D.164 |
某校从参加高二年级数学测试的学生中抽出了100名学生,其数学成绩的频率分布直方图如图所示,其中成绩分组区间是
则成绩在
上的人数是( )




A.70 | B.60 | C.35 | D.30 |
如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题(满分12分)的得分情况.乙组某个数据的个位数模糊,记为x,已知甲、乙两组的平均成绩相同.
(1)求x的值,并判断哪组学生成绩更稳定;
(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.
(1)求x的值,并判断哪组学生成绩更稳定;
(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.

质检部门从企业生产的产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图的频率分布直方图,质量指标值落在区间
,
,
内的频率之比为
.
(Ⅰ)求这些产品质量指标值落在区间
内的频率;
(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间
内的产品件数为
,求
的分布列与数学期望.




(Ⅰ)求这些产品质量指标值落在区间

(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间



