- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校从参加邵阳市数学竞赛的学生中随机抽取20名学生的数学成绩(均为整数)整理后分成六
画出如图所示的频率分布直方图,观察图形的信息,回答下列问题:

(1)求这20名学生中分数在
内的人数;
(2)若从成绩大于或等于80分的学生中随机抽取2人,求恰有1名学生成绩在区间
内的概率.


(1)求这20名学生中分数在

(2)若从成绩大于或等于80分的学生中随机抽取2人,求恰有1名学生成绩在区间

某高职院校进行自主招生文化素质考试,考试内容为语文、数学、英语三科,总分为200分.现从上线的考生中随机抽取20人,将其成绩用茎叶图记录如下:
(Ⅰ)计算上线考生中抽取的男生成绩的方差
;(结果精确到小数点后一位)
(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.
男 | | 女 | ||||||||||
| | | | | | 15 | 6 | | | | | |
| | | | 5 | 4 | 16 | 3 | 5 | 8 | | | |
| | | | 8 | 2 | 17 | 2 | 3 | 6 | 8 | 8 | 8 |
| | | | 6 | 5 | 18 | 5 | 7 | | | | |
| | | | | | 19 | 2 | 3 | | | | |
(Ⅰ)计算上线考生中抽取的男生成绩的方差

(Ⅱ)从上述茎叶图180分以上的考生中任选2人作为考生代表出席座谈会,求所选考生恰为一男一女的概率.
某公司在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(1)根据频率分布直方图,计算图中各小长方形的宽度;
(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:
表中的数据显示,
与
之间存在线性相关关系,请将(2)的结果填入空白栏,并计算
关于
的回归方程.
附公式:
,
.

(1)根据频率分布直方图,计算图中各小长方形的宽度;
(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入![]() | 1 | 2 | 3 | 4 | 5 |
销售收益![]() | 2 | 3 | 2 | | 7 |
表中的数据显示,




附公式:


某搜索引擎广告按照付费价格对搜索结果进行排名,点击一次付费价格排名越靠前,被点击的次数也可能会提高,已知某关键词被甲、乙等多个公司竞争,其中甲、乙付费情况与每小时点击量结果绘制成如下的折线图.
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为
,则点
近似在一条直线附近.试根据前5次价格与每小时点击次数的关系,求y关于x的回归直线
.
(附:回归方程系数公式:
,
).
(2)若把乙公司设置的每次点击价格为x,每小时点击次数为



(附:回归方程系数公式:


2017年高考特别强调了要增加对数学文化的考查,为此瓦房店市高级中学高三年级数学组特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为
,
,…,
分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).
(1)求频率分布直方图中的
的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表,中位数请用分数表示);
(2)若高三年级共有700名学生,试估计高三学生中这次测试成绩不低于70分的人数;
(3)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求后两组中至少有1人被抽到的概率.



(1)求频率分布直方图中的

(2)若高三年级共有700名学生,试估计高三学生中这次测试成绩不低于70分的人数;
(3)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求后两组中至少有1人被抽到的概率.

下表是某厂1~4月份用水量(单位:百吨)的一组数据:

由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是
=-0.7x+a,则a等于( )

由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是

A.10.5 | B.5.15 | C.5.2 | D.5.25 |
某商场对一个月内每天的顾客人数进行统计,得到如图所示的样本茎叶图,则该样本的中位数和众数分别是


A.46,45 | B.45,46 | C.45,45 | D.47,45 |
某学校随机抽取
名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是
,样本数据分组为
,
,
,
,
.则该校学生上学所需时间的均值估计为______________ .(精确到
分钟).









某市举行“中学生诗词大赛”海选,规定:成绩大于或等于
分的具有参赛资格,某校有
名学生参加了海选,所有学生的成绩均在区间
内,其频率分布直方图如图:

(Ⅰ)求获得参赛资格的人数;
(Ⅱ)若大赛分初赛和复赛,在初赛中每人最多有
次选题答题的机会,累计答对
题或答错
题即终止,答对
题者方可参加复赛,已知参赛者即答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为
,求甲在初赛中答题个数
的分布列及数学期望




(Ⅰ)求获得参赛资格的人数;
(Ⅱ)若大赛分初赛和复赛,在初赛中每人最多有






