- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到下图所示女生成绩的茎叶图.其中抽取的男生中有21人的成绩在80分以下,规定80分以上为优秀(含80分).

(1)请根据题意,将2×2列联表补充完整;
(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?
附:
,其中
.

(1)请根据题意,将2×2列联表补充完整;
| 优秀 | 非优秀 | 总计 |
男生 | | | |
女生 | | | |
总计 | | | 50 |
(2)据此列联表判断,是否有90%的把握认为该学科成绩与性别有关?
附:


参考数据 | 当![]() |
当![]() | |
当![]() | |
当![]() |
某学校的特长班有
名学生,其中有体育生
名,艺术生
名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于
次/分到
次/分之间.现将数据分成五组,第一组
,第二组
,…,第五章
,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为
.

(1)求
的值,并求这
名同学心率的平均值;
(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为
,请将下面的列联表补充完整,并判断是否有
的把握认为心率小于
次/分与常年进行系统的身体锻炼有关?说明你的理由.
参考数据:
参考公式:
,其中
.










(1)求


(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为



| 心率小于60次/分 | 心率不小于60次/分 | 合计 |
体育生 | | | 20 |
艺术生 | | | 30 |
合计 | | | 50 |
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


某单位招聘职工分为笔试和面试两个环节,将笔试成绩合格(满分100分,及格60分,精确到个位数)的应聘者进行统计,得到如下的频率分布表:
(Ⅰ)确定表中
的值(直接写出结果,不必写过程)
(Ⅱ)面试规定,笔试成绩在80分(不含80分)以上者可以进入面试环节,面试时又要分两关,首先面试官依次提出4个问题供选手回答,并规定,答对2道题就终止回答,通过第一关可以进入下一关,如果前三题均没有答对,则不再回答第四题并且不能进入下一关,假定某选手获得面试资格的概率与答对每道题的概率相等.
求该选手答完3道题而通过第一关的概率;
记该选手在面试第一关中的答题个数为X,求X的分布列及数学期望.
分组 | 频数 | 频率 |
[60,70] | ![]() | 0.16 |
(70,80] | 22 | ![]() |
(80,90] | 14 | 0.28 |
(90,100] | ![]() | ![]() |
合计 | 50 | 1 |
(Ⅰ)确定表中

(Ⅱ)面试规定,笔试成绩在80分(不含80分)以上者可以进入面试环节,面试时又要分两关,首先面试官依次提出4个问题供选手回答,并规定,答对2道题就终止回答,通过第一关可以进入下一关,如果前三题均没有答对,则不再回答第四题并且不能进入下一关,假定某选手获得面试资格的概率与答对每道题的概率相等.


如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( )


A.性别与喜欢理科无关 |
B.女生中喜欢理科的比为80% |
C.男生比女生喜欢理科的可能性大一些 |
D.男生不喜欢理科的比为60% |
某校研究性学习小组从汽车市场上随机抽取
辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于
公里和
公里之间,将统计结果分成
组:
,
,
,
,
,绘制成如图所示的频率分布直方图.

(1)求直方图中
的值;
(2)求续驶里程在
的车辆数;
(3)若从续驶里程在
的车辆中随机抽取
辆车,求其中恰有一辆车的续驶里程在
内的概率.










(1)求直方图中

(2)求续驶里程在

(3)若从续驶里程在



某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对
两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:
类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从
两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计
两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).

![]() ![]() | 0~ 500元 | 500~ 1000元 | 1000~ 1500元 | 1500~ 2000元 |
A类 | 20 | 50 | 20 | 10 |
B类 | 50 | 30 | 10 | 10 |
月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.
(Ⅰ)从
(Ⅱ)从

(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计

如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,甲、乙两人这几场比赛得分的平均数分别为
,
;标准差分别是
,
,则有( )






A.![]() | B.![]() |
C.![]() | D.![]() |
已知某地区中小学生的人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取
的学生进行调查,则抽取的高中生中近视的人数为_____________.



