- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)
如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以
表示.已知甲、乙两个小组的数学成绩的平均分相同.

(1)求
的值;
(2)求甲、乙两个小组数学成绩的方差,并说明哪个小组的成绩相对比较稳定;
参考公式:
如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以


(1)求

(2)求甲、乙两个小组数学成绩的方差,并说明哪个小组的成绩相对比较稳定;
参考公式:

(本小题满分12分)
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作
和
,试求
和
的分布列和数学期望.
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生 | 1号 | 2号 | 3号 | 4号 | 5号 |
甲班 | 6 | 5 | 7 | 9 | 8 |
乙班 | 4 | 8 | 9 | 7 | 7 |
(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?
(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作




如图是某市2014年11月份30天的空气污染指数的频率分布直方图.根据国家标准,污染指数在区间
内,空气质量为优;在区间
内,空气质量为良;在区间
内,空气质量为轻微污染;
由此可知该市11月份空气质量为优或良的天数有 天.





某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人.

(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为
,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为
,求
的分布列和数学期望.

(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为



某林场有树苗20000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为100的样本,则样本中松树苗的数量为()
A.15 | B.20 | C.25 | D.30 |
(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.


(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取
份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为 X ,求 X 的分布列和数学望期.


(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取
