- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机抽样
- + 用样本估计总体
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 变量间的相关关系
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如上图)。为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在
(元)月收入段应抽出的人数为( ).



A.![]() | B.![]() | C.![]() | D.![]() |
某校在一年一度的“校园十佳歌手”比赛中,9位评委为参赛选手A给出的分数的茎叶图如图所示.在去掉一个最高分和一个最低分后,得出选手A得分的中位数是


A.93 | B.92 | C.91 | D.90 |
(本小题满分12分)贵广高速铁路自贵阳北站起,经黔南州、黔东南、广西桂林、贺州、广东肇庆、佛山终至广州南站. 其中广东省内有怀集站、广宁站、肇庆东站、三水南站、佛山西站、广州南站共6个站. 记者对广东省内的6个车站的外观进行了满意度调查,得分情况如下:
已知6个站的平均得分为75分.
(1)求广州南站的满意度得分x,及这6个站满意度得分的标准差;
(2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
车站 | 怀集站 | 广宁站 | 肇庆东站 | 三水南站 | 佛山西站 | 广州南站 |
满意度得分 | 70 | 76 | 72 | 70 | 72 | x |
已知6个站的平均得分为75分.
(1)求广州南站的满意度得分x,及这6个站满意度得分的标准差;
(2)从广东省内前5个站中,随机地选2个站,求恰有1个站得分在区间(68,75)中的概率.
(本小题满分13分)根据新修订的《环境空气质量标准》指出空气质量指数在
,各类人群可正常活动.某市环保局在2014年对该市进行为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.

(1)求
的值;
(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为
,求
的分布列和数学期望.







(1)求

(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为


为了调查某校学生体质健康达标情况,现采用随机抽样的方法从该校抽取了m名学生进行体育测试. 根据体育测试得到了这m名学生各项平均成绩(满分100分),按照以下区间分为七组:
,
,并得到频率分布直方图(如图),已知测试平均成绩在区间
有20人.

(1)求m的值及中位数n;
(2)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间,根据以上抽样调查数据,该校是否需要增加体育活动时间?




(1)求m的值及中位数n;
(2)若该校学生测试平均成绩小于n,则学校应适当增加体育活动时间,根据以上抽样调查数据,该校是否需要增加体育活动时间?
(本小题满分12分)为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下:

规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。
(1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(2)从乙厂抽出上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数
的分布列及数学期望。

规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。
(1)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小;
(2)从乙厂抽出上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数
