- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为()
A.40 | B.36 | C.30 | D.20 |
某学院
三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方祛抽取一个容量为120的样本,已知该学院的
专业有380名学生,
专业有420名学生,则在该学院的
专业应抽取的学生人数为( )




A.30 | B.40 | C.50 | D.60 |
在
中国北京世界园艺博览会期间,某工厂生产
、
、
三种纪念品,每一种纪念品均有精品型和普通型两种,某一天产量如下表:(单位:个)
现采用分层抽样的方法在这一天生产的纪念品中抽取
个,其中
种纪念品有
个.
(1)求
的值;
(2)从
种精品型纪念品中抽取
个,其某种指标的数据分别如下:
、
、
、
、
,把这
个数据看作一个总体,其均值为
,方差为
,求
的值;
(3)用分层抽样的方法在
种纪念品中抽取一个容量为
的样木,从样本中任取
个纪念品,求至少有
个精品型纪念品的概率.




| 纪念品![]() | 纪念品![]() | 纪念品![]() |
精品型 | ![]() ![]() | ![]() | ![]() |
普通型 | ![]() | ![]() | ![]() |
现采用分层抽样的方法在这一天生产的纪念品中抽取



(1)求

(2)从











(3)用分层抽样的方法在




某单位有职工480人,其中青年职工210人,中年职工150人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为________.
某电视台为宣传本省,随机对本省内
岁的人群抽取了n人,回答问题“本省内著名旅游景点有哪些”统计结果如图表所示


(1)分别求出
的值;
(2)从第
组回答正确的人中用分层抽样的方法抽取6人,求第
组每组各抽取多少人?
(3)指出直方图中,这组数据的中位数是多少(取整数值)?



(1)分别求出

(2)从第


(3)指出直方图中,这组数据的中位数是多少(取整数值)?
某校高三年级有男生
人,女生
人,为了了解该年级学生的健康情况,从男生中任意抽取
人,从女生中任意抽取
人进行调查,这种抽样方法是( )




A.系统抽样法 | B.抽签法 |
C.随机数表法 | D.分层抽样法 |
某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为600件,400件,300件,用分层抽样方法抽取容量为
的样本,若从丙车间抽取6件,则
的值为( )


A.18 | B.20 | C.24 | D.26 |
某校高三年级有男生220人,学籍编号为1,2,…,220;女生380人,学籍编号为221,222,…,600.为了解学生学习的心理状态,按学籍编号采用系统抽样的方法从这600名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为10),再从这10名学生中随机抽取3人进行座谈,则这3人中既有男生又有女生的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
地球海洋面积远远大于陆地面积,随着社会的发展,科技的进步,人类发现海洋不仅拥有巨大的经济利益,还拥有着深远的政治利益.联合国于第63届联合国大会上将每年的6月8日确定为“世界海洋日”.2019年6月8日,某大学的行政主管部门从该大学随机抽取100名大学生进行一次海洋知识测试,并按测试成绩(单位:分)分组如下:第一组
,第二组
,第二组
,第四组
,第五组
,得到频率分布直方图如下图:

(1)求实数
的值;
(2)若从第二组、第五组的学生中按组用分层抽样的方法抽取9名学生组成中国海洋实地考察小队,出发前,用简单随机抽样方法从9人中抽取2人作为正、副队长,求“抽取的2人为不同组”的概率.






(1)求实数

(2)若从第二组、第五组的学生中按组用分层抽样的方法抽取9名学生组成中国海洋实地考察小队,出发前,用简单随机抽样方法从9人中抽取2人作为正、副队长,求“抽取的2人为不同组”的概率.
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)

(I) 求x,y ;
(II) 若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率.

(I) 求x,y ;
(II) 若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率.