- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某初级中学共有学生2000名,各年级男生、女生人数如表: 已知在全校学生中随机抽取1名,抽到的是初二年级女生的概率是0.19.
(1)求x的值.
(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名?
(3)已知y≥245,z≥245,求初三年级女生比男生多的概率.
| 初一年级 | 初二年级 | 初三年级 |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
(1)求x的值.
(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名?
(3)已知y≥245,z≥245,求初三年级女生比男生多的概率.
为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从
,
,
三所中学抽取60名教师进行调查,已知
,
,
三所学校中分别有180,270,90名教师,则从
学校中应抽取的人数为( )







A.10 | B.12 | C.18 | D.24 |
某校高一年级有学生480名,对他们进行政治面貌和性别的调查,其结果如下:
(1)若随机抽取一人,是团员的概率为
,求
,
;
(2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名团员中任选2人,求两人中至多有1个女生的概率.
性别 | 团员 | 群众 |
男 | ![]() | 80 |
女 | 180 | ![]() |
(1)若随机抽取一人,是团员的概率为



(2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名团员中任选2人,求两人中至多有1个女生的概率.
某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为
的样本,其中甲种产品有18件,则样本容量
= .


某地统计局就该地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)).

(1)求居民月收入在[2000,2500)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出90人作进一步分析,则月收入在[3000,3500)的这段应抽多少人?

(1)求居民月收入在[2000,2500)的频率;
(2)根据频率分布直方图算出样本数据的中位数;
(3)在月收入为[2500,3000),[3000,3500),[3500,4000]的三组居民中,采用分层抽样方法抽出90人作进一步分析,则月收入在[3000,3500)的这段应抽多少人?
某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.
(Ⅰ)这5人中男生、女生各多少名?
(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.
(Ⅰ)这5人中男生、女生各多少名?
(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.
中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
(2)从调查的100人中年龄在15~25,25~35两组按分层抽样的方法抽取6人参加某项活动现从这6人中随机抽2人,求这2人中至少1人的年龄在25~35之间的概率.
参考数据:

其中n=a+b+c+d

(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
(2)从调查的100人中年龄在15~25,25~35两组按分层抽样的方法抽取6人参加某项活动现从这6人中随机抽2人,求这2人中至少1人的年龄在25~35之间的概率.
参考数据:



某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)
(1)应抽查男生与女生各多少人?
(2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为
.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

附:
(1)应抽查男生与女生各多少人?
(2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为


| 男生 | 女生 | 总计 |
每周平均课外阅读时间不超过2小时 | | | |
每周平均课外阅读时间超过2小时 | | | |
总计 | | | |
附:

![]() | 0.100 | 0.050 | 0.010 | 0.005 |
![]() | 2.706 | 3.841 | 6.635 | 7.879 |
某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是 ______.