- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内
,
,
三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:
类行业:85,82,77,78,83,87;
类行业:76,67,80,85,79,81;
类行业:87,89,76,86,75,84,90,82.
(Ⅰ)计算该城区这三类行业中每类行业的单位个数;
(Ⅱ)若从抽取的
类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.






(Ⅰ)计算该城区这三类行业中每类行业的单位个数;
(Ⅱ)若从抽取的

国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
规定:实心球投掷距离在
之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值
,将频率视为概率.
(1)求
,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比.
(2)现在从实心球投掷距离在
,
之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在
内的概率.
分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 9 | 23 | 40 | 22 | 6 |
规定:实心球投掷距离在


(1)求

(2)现在从实心球投掷距离在



甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生( )
A.30人,30人,30人 | B.30人,50人,10人 |
C.20人,30人,40人 | D.30人,45人,15人 |
第
届冬奥会将于
年在中国北京和张家口举行,为宣传冬奥会,让更多的人了解、喜爱冰雪项目,某大学举办了冬奥会知识竞赛,并从中随机抽取了
名学生的成绩,绘制成如图所示的频率分布直方图.

(Ⅰ)试根据频率分布直方图估计这
名学生的平均成绩(同一组数据用该组区间的中点值代替);
(Ⅱ)若采用分层抽样的方法从
、
这两个分数段中抽取
人,求从这两个分数段中应分别抽取多少人?
(Ⅲ)从(Ⅱ)中抽取的
人中随机抽取
人到某社区开展冬奥会宜传活动,求抽取的
人成绩均在
中的概率.




(Ⅰ)试根据频率分布直方图估计这

(Ⅱ)若采用分层抽样的方法从



(Ⅲ)从(Ⅱ)中抽取的




为了解某社区居民有无收看“青运会开幕式”,某记者分别从某社区
岁,
岁,
岁的三个年龄段中的
人,
人,
人中,采用分层抽样的方法共抽查了
人进行调查,若在
岁这个年龄段中抽查了
人,那么
为( )










A.![]() | B.![]() | C.![]() | D.![]() |
十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫,某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植脐橙,并利用互联网电商进行销售,为了提高销量,现从该村的脐橙树上随机摘下100个脐橙进行测重,其质量(单位克)分布在区间[200,500内,由统计的质量数据作出频率分布直方图如图所示.

(1)按分层抽样的方法从质量在
,
的脐橙中随机抽取5个,再从这5个脐橙中随机抽取2个,求这2个脐橙质量至少有一个不小于400克的概率;
(2)以各组数据的中间数值代替这组数据的平均值,以频率代替概率,已知该村的脐橙种植地上大约还有100000个脐橙待出售,某电商提出两种收购方案:
A.所有脐橙均以7元/千克收购;
B.低于350克的脐橙以2元/个收购,其余的以3元/个收购.
请你通过计算为该村选择收益较好的方案.

(1)按分层抽样的方法从质量在


(2)以各组数据的中间数值代替这组数据的平均值,以频率代替概率,已知该村的脐橙种植地上大约还有100000个脐橙待出售,某电商提出两种收购方案:
A.所有脐橙均以7元/千克收购;
B.低于350克的脐橙以2元/个收购,其余的以3元/个收购.
请你通过计算为该村选择收益较好的方案.
某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。
某市有中外合资企业160家,私营企业320家,国有企业240家,其他性质的企业80家,为了了解企业的管理情况,现用分层抽样的方法从这800家企业中抽取一个容量为
的样本,已知从国有企业中抽取了12家,那么
______.


某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为

A.6 | B.12 |
C.18 | D.16 |
已知A、B、C三个社区的居民人数分别为600、1200、1500,现从中抽取一个容量为n的样本,若从C社区抽取了15人,则
( )

A.33 | B.18 | C.27 | D.21 |