- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 普查与抽样
- 总体与样本
- 系统抽样
- + 分层抽样
- 分层抽样的特征及适用条件
- 抽样比、样本总量、各层总数、总体容量的计算
- 分层抽样的概率
- 设计分层抽样过程
- 三种抽样方法的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
每年的12月4日为我国“法制宣传日”.天津市某高中团委在2019年12月4日开展了以“学法、遵法、守法”为主题的学习活动.已知该学校高一、高二、高三的学生人数分别是480人、360人、360人.为检查该学校组织学生学习的效果,现采用分层抽样的方法从该校全体学生中选取10名学生进行问卷测试.具体要求:每位被选中的学生要从10个有关法律、法规的问题中随机抽出4个问题进行作答,所抽取的4个问题全部答对的学生将在全校给予表彰.
⑴求各个年级应选取的学生人数;
⑵若从被选取的10名学生中任选3人,求这3名学生分别来自三个年级的概率;
⑶若被选取的10人中的某学生能答对10道题中的7道题,另外3道题回答不对,记
表示该名学生答对问题的个数,求随机变量
的分布列及数学期望.
⑴求各个年级应选取的学生人数;
⑵若从被选取的10名学生中任选3人,求这3名学生分别来自三个年级的概率;
⑶若被选取的10人中的某学生能答对10道题中的7道题,另外3道题回答不对,记


一批灯泡
只,其中
、
、
的数目之比是
,现用分层抽样的方法产生一个容量为
的样本,则三种灯泡依次抽取的个数为( )






A.20,15,5 | B.4,3,1 |
C.16,12,4 | D.8,6,2 |
某大学共有本科生
人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为
的样本,则应抽取三年级的学生人数为( )


A.![]() | B.![]() | C.![]() | D.![]() |
某公司生产
、
、
三种不同型号的轿车,产量之比依次为
,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为
的样本,样本中
种型号的轿车比
种型号的轿车少8辆,那么
.









某中学初一、初二、初三的学生人数分别为500,600,700,现用分层抽样的方法从这三个年级中选取18人参加学校的演讲比赛,则应选取的初二年级学生人数为( )
A.5 | B.6 | C.7 | D.8 |
为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.

(1)求图中
的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.

(1)求图中

(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
某市统计局就某地居民的月收入调查了10000人,他们的月收入均在
内.现根据所得数据画出了该样本的频率分布直方图如下.(每个分组包括左端点,不包括右端点,如第一组表示月收入在
内) 
(1)求某居民月收入在
内的频率;
(2)根据该频率分布直方图估计居民的月收入的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在
内的居民中抽取多少人?



(1)求某居民月收入在

(2)根据该频率分布直方图估计居民的月收入的中位数;
(3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在

某单位
名职工的年龄分布情况如图所示,现要从中抽取
名职工进行问卷调查,若采用分层抽样方法,则
岁年龄段应抽取的人数是( )





A.![]() | B.![]() | C.![]() | D.![]() |
某小学、初中、高中一体化学校,学校学生比例如下图,对全校学生采用分层抽样进行一次调查,样本容量为240人,则其中初中女生有( )人


A.18 | B.42 | C.32 | D.48 |