- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- 统计案例
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)某企业有
位员工.拟在新年联欢会中,增加一个摸球兑奖的环节,规定:每位员工从一个装有
个标有面值的球的袋中一次性随机摸出
个球,球上所标的面值之和为该员工所获的中奖额.企业预算抽奖总额为
元,共提出两种方案.
方案一:袋中所装的
个球中有两个球所标的面值为
元,另外两个标的面值为
元;
方案二:袋中所装的
个球中有两个球所标的面值为
元,另外两个标的面值为
元.
(Ⅰ)求两种方案中,某员工获奖金额的分布列;
(Ⅱ)在两种方案中,请帮助该企业选择一个适合的方案,并说明理由.




方案一:袋中所装的



方案二:袋中所装的



(Ⅰ)求两种方案中,某员工获奖金额的分布列;
(Ⅱ)在两种方案中,请帮助该企业选择一个适合的方案,并说明理由.
某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.把符合条件的1000名志愿者按年龄分组:第1组[20,25)、第2组[25,30)、第3组[30,35)、第4组[35,40)、第5组[40,45],得到的频率分布直方图如图所示:

(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者参加广场的宣传活动,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在这12名志愿者中随机抽取3名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率;
(3)在(2)的条件下,若ξ表示抽出的3名志愿者中第3组的人数,求ξ的分布列和数学期望.

(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者参加广场的宣传活动,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在这12名志愿者中随机抽取3名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率;
(3)在(2)的条件下,若ξ表示抽出的3名志愿者中第3组的人数,求ξ的分布列和数学期望.
学生的学习能力参数
可有效衡量学生的综合能力,
越大,综合能力越强,为推动数学知识的发展,提高学生的综合能力.某校根据学生的学习能力参数
将参加数学竞赛小组的学生分成了如下三类:
某研究性学习小组,从该竞赛小组中按分层抽样的方法随机选取了
人,根据其学习能力参数
,作出了频率与频数的统计表:
(1)求
,
,
,
的值
(2)规定:学习能力参数
不少于70称为优秀.若从这
人中任选
人,记抽到到的优秀人数为随机变量
,求
的分布列和数学期望



学习能力参数![]() | 学习能力参数![]() | ||
![]() | ![]() | ![]() | |
学生人数(人) | 15 | 10 | ![]() |
某研究性学习小组,从该竞赛小组中按分层抽样的方法随机选取了


分组 | 频数(人) | 频率 |
![]() | 3 | |
![]() | ![]() | ![]() |
![]() | | ![]() |
合计 | ![]() | ![]() |
(1)求




(2)规定:学习能力参数





下列判断错误的是( )
A.若随机变量![]() ![]() ![]() ![]() |
B.若![]() ![]() ![]() ![]() |
C.若随机变量![]() ![]() ![]() |
D.![]() ![]() |
(本题满分12分)某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为
,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为
,都未取得优秀成绩的概率为
,且不同课程是否取得优秀成绩相互独立.
(1)求m,n;
(2)设X为该同学取得优秀成绩的课程门数,求EX.



(1)求m,n;
(2)设X为该同学取得优秀成绩的课程门数,求EX.