设随机变量服从正态分布,则 (   )
A.B.C.1-2D.1-
当前题号:1 | 题型:单选题 | 难度:0.99
(本小题满分12分)某高中数学竞赛培训在某学段共开设有初等代数、平面几何、初等数论和微积分初步共四门课程,要求初等数论、平面几何都要合格,且初等代数和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格.现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同(见下表),且每一门课程是否合格相互独立.

(Ⅰ)求甲同学取得参加数学竞赛复赛的资格的概率;
(Ⅱ)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望
当前题号:2 | 题型:解答题 | 难度:0.99
已知某市两次数学测试的成绩分别服从正态分布,则以下
结论正确的是
A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定
B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定
C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定
D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定
当前题号:3 | 题型:单选题 | 难度:0.99
(本小题满分12分)某校举行中学生“珍爱地球·保护家园”的环保知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(Ⅰ)求选手甲进入复赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
设随机变量等可能取值,如果,则的值为(   )
A.B.C.D.不能确定
当前题号:5 | 题型:单选题 | 难度:0.99
空气污染,又称为大气污染,当空气污染指数(单位:)为时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为时,空气质量级别为四级,空气质量状况属于中度污染; 2015年1月某日某省个监测点数据统计如下:
空气污染指数
(单位:)




监测点个数
15
40

15
 
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;
(Ⅱ)统计部门从该省空气质量“良好”和“轻度污染”的两类监测点中采用分层抽样的方式抽取了7个监测点,省环保部门再从中随机选取个监测点进行调研,记省环保部门“选到空气质量“良好”的城市个数为”,求的分布列.
当前题号:6 | 题型:解答题 | 难度:0.99
( 本小题满分12分) 某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示

(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.
(2)从该班中任意选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望
(3)从该班中任意选两名学生,用表示这两人参加活动次数之和,记“函数在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.
当前题号:7 | 题型:解答题 | 难度:0.99
已知:()
A.0.0456B.0.50C.0.6826D.0.9544
当前题号:8 | 题型:单选题 | 难度:0.99
已知随机变量ε的分布列如下表:
ε
0
1
2
3
4
p
0.2
0.4
0.3
0.08
0.02
 
求其数学期望、方差和标准差.
当前题号:9 | 题型:解答题 | 难度:0.99
某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.
(1)从这16人中随机选取3人,记表示抽到“极幸福”的人数,求的分布列及数学期望,并求出至多有1人是“极幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99