刷题首页
题库
高中数学
题干
已知椭圆
的中心在坐标原点
,其焦点与双曲线
的焦点重合,且椭圆
的短轴的两个端点与其一个焦点构成正三角形.
(1)求椭圆
的方程;
(2)过双曲线
的右顶点
作直线
与椭圆
交于不同的两点
.设
,当
为定值时,求
的值;
上一题
下一题
0.99难度 解答题 更新时间:2019-03-19 08:39:12
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长是短轴长的
倍,焦距为
.
(1)求椭圆的方程;
(2)已知定点
,若直线
与椭圆交于
两点.问:是否存在
的值,使以
为直径的圆过
点?请说明理由.
同类题2
已知椭圆
其左,右焦点分别为
,离心率为
点
又点
在线段
的中垂线上。
(1)求椭圆
的方程;
(2)设椭圆
的左右顶点分别为
,点
在直线
上(点
不在
轴上),直线
与椭圆
交于点
直线
与椭圆
交于
线段
的中点为
,证明:
。
同类题3
已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线
L
交椭圆
C
于
A
.B
两点.问:是否存在一个定点
T
,使得以
AB
为直径的圆恒过点
T
? 若存在,求点
T
坐标;若不存在,说明理由.
同类题4
已知椭圆
上任一点
到
,
的距离之和为4.
(1)求椭圆
的标准方程;
(2)已知点
,设直线
不经过
点,
与
交于
,
两点,若直线
的斜率与直线
的斜率之和为
,判断直线
是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
同类题5
现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图
),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为
,将此椭圆绕
轴旋转一周后,得一橄榄状的几何体(图
),其体积等于
______
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
求直线与椭圆的交点坐标
椭圆中的定值问题