- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,已知抛物线y2=8
x的焦点为F,直线l过点F且依次交抛物线及圆
2于A,B,C,D四点,则|AB|+4|CD|的最小值为_____.



设曲线
上一点
到焦点的距离为3.
(1)求曲线C方程;
(2)设P,Q为曲线C上不同于原点O的任意两点,且满足以线段PQ为直径的圆过原点O,试问直线PQ是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,说明理由.


(1)求曲线C方程;
(2)设P,Q为曲线C上不同于原点O的任意两点,且满足以线段PQ为直径的圆过原点O,试问直线PQ是否恒过定点?若恒过定点,求出定点坐标;若不恒过定点,说明理由.
已知抛物线E:x2=2py(p>0)的焦点为F,点M是直线y=x与抛物线E在第一象限内的交点,且|MF|=5.
(1)求抛物E的方程.
(2)直线l与抛物线E相交于两点A,B,过点A,B分别作AA1⊥x轴于A1,BB1⊥x轴于B1,原点O到直线l的距离为1.求
的最大值.
(1)求抛物E的方程.
(2)直线l与抛物线E相交于两点A,B,过点A,B分别作AA1⊥x轴于A1,BB1⊥x轴于B1,原点O到直线l的距离为1.求
