- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
己知点A是抛物线
的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足
,当
取最大值时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为



A.![]() | B.![]() | C.![]() | D.![]() |
已知抛物线Γ的准线方程为
.焦点为
.
(1)求证:抛物线Γ上任意一点
的坐标
都满足方程:
(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;
(3)设垂直于
轴的直线与抛物线交于
两点,求线段
的中点
的轨迹方程.


(1)求证:抛物线Γ上任意一点



(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;
(3)设垂直于




已知抛物线y2=2px(p>0)的焦点为F,点A(2,y0)为抛物线上一点,且|AF|=4.
(1)求抛物线的方程;
(2)直线l:y=x+m与抛物线交于不同两点P,Q,若
,其中O为坐标原点,求m的值.
(1)求抛物线的方程;
(2)直线l:y=x+m与抛物线交于不同两点P,Q,若
