- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线的定义
- 抛物线定义的理解
- 利用抛物线定义求动点轨迹
- 抛物线上的点到定点的距离及最值
- 抛物线上的点到定点和焦点距离的和、差最值
- 抛物线标准方程的形式
- 抛物线标准方程的求法
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线y2=2px(p>0)的焦点为F,点A(2,y0)为抛物线上一点,且|AF|=4.
(1)求抛物线的方程;
(2)直线l:y=x+m与抛物线交于不同两点P,Q,若
,其中O为坐标原点,求m的值.
(1)求抛物线的方程;
(2)直线l:y=x+m与抛物线交于不同两点P,Q,若

已知动点
到定点
的距离比
到定直线
的距离小1.
(1)求点
的轨迹
的方程;
(2)过点
任意作互相垂直的两条直线
,分别交曲线
于点
和
.设线段
,
的中点分别为
,求证:直线
恒过一个定点.




(1)求点


(2)过点








