- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求椭圆的离心率或离心率的取值范围
- 椭圆离心率大小与椭圆圆扁的关系
- 根据离心率求椭圆的标准方程
- 相同离心率的椭圆的方程
- 由椭圆的离心率求参数的取值范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系中,已知椭圆
经过点
,且其左右焦点的坐标分别是
,
.
(1)求椭圆
的离心率及标准方程;
(2)设
为动点,其中
,直线
经过点
且与椭圆
相交于
,
两点,若
为
的中点,是否存在定点
,使
恒成立?若存在,求点
的坐标;若不存在,说明理由




(1)求椭圆

(2)设












已知椭圆
1(a>b>0)的左右焦点分别为F1、F2,左右顶点分别为A、B,上顶点为T,且△TF1F2为等边三角形.
(1)求此椭圆的离心率e;
(2)若直线y=kx+m(k>0)与椭圆交与C、D两点(点D在x轴上方),且与线段F1F2及椭圆短轴分别交于点M、N(其中M、N不重合),且|CM|=|DN|.
①求k的值;
②设AD、BC的斜率分别为k1,k2,求
的取值范围.

(1)求此椭圆的离心率e;
(2)若直线y=kx+m(k>0)与椭圆交与C、D两点(点D在x轴上方),且与线段F1F2及椭圆短轴分别交于点M、N(其中M、N不重合),且|CM|=|DN|.
①求k的值;
②设AD、BC的斜率分别为k1,k2,求

过椭圆E:
1(a>b>0)上一动点P向圆O:x2+y2=b2引两条切线PA,PB,切点分别是A,B.直线AB分别与x轴,y轴交于点M,N(O为坐标原点).

(1)若在椭圆E上存在点P,满足PA⊥PB,求椭圆E的离心率的取值范围;
(2)求证:在椭圆E内,存在一点C满足|CO|=|CA|=|CP|=|CB|;
(3)若椭圆E的短轴长为2,△MON面积的最小值为
,求椭圆E的方程.


(1)若在椭圆E上存在点P,满足PA⊥PB,求椭圆E的离心率的取值范围;
(2)求证:在椭圆E内,存在一点C满足|CO|=|CA|=|CP|=|CB|;
(3)若椭圆E的短轴长为2,△MON面积的最小值为

在平面直角坐标系
中,如图,已知椭圆E:
的左、右顶点分别为
、
,上、下顶点分别为
、
.设直线
倾斜角的余弦值为
,圆
与以线段
为直径的圆关于直线
对称.

(1)求椭圆E的离心率;
(2)判断直线
与圆
的位置关系,并说明理由;
(3)若圆
的面积为
,求圆
的方程.












(1)求椭圆E的离心率;
(2)判断直线


(3)若圆



某同学在画“切面圆柱体”(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体)的过程中,发现“切面”是一个椭圆,若“切面”所在平面与底面成
角,则该椭圆的离心率为( )

A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,
为椭圆的左右焦点,过
的直线交椭圆于B.D两点且
,E为线段
上靠近
的四等分点.若对于线段
上的任意点P,都有
成立,则椭圆的离心率为________.







