- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知
是椭圆
的一个顶点,
的短轴是圆
的直径,直线
,
过点P且互相垂直,
交椭圆
于另一点D,
交圆
于A,B两点

Ⅰ
求椭圆
的标准方程;
Ⅱ
求
面积的最大值.

















已知以椭圆
的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.
(1)求椭圆
的方程:
(2)若
是椭圆
上的动点,求
的取值范围;
(3)直线
:
与椭圆
交于异于椭圆顶点的
,
两点,
为坐标原点,直线
与椭圆
的另一个交点为
点,直线
和直线
的斜率之积为1,直线
与
轴交于点
.若直线
,
的斜率分别为
,
试判断
,是否为定值,若是,求出该定值;若不是,说明理由.

(1)求椭圆

(2)若



(3)直线



















已知
,
为椭圆
:
的左、右焦点,离心率为
,且椭圆
的上顶点到左、右顶点的距离之和为
.
(1)求椭圆
的标准方程;
(2)过点
的直线
交椭圆于
,
两点,若以
为直径的圆过
,求直线
的方程.







(1)求椭圆

(2)过点







已知曲线
上的任意一点到两定点
、
距离之和为
,直线
交曲线
于
两点,
为坐标原点.
(1)求曲线
的方程;
(2)若
不过点
且不平行于坐标轴,记线段
的中点为
,求证:直线
的斜率与
的斜率的乘积为定值;
(3)若直线
过点
,求
面积的最大值,以及取最大值时直线
的方程.








(1)求曲线

(2)若






(3)若直线




如图,已知过点
的椭圆
的离心率为
,左顶点和上顶点分别为A,B.

(1)求椭圆的标准方程;
(2)若P为线段OD延长线上一点,直线PA交椭圆于另一点E,直线PB交椭圆于另一点Q.
①求直线PA与PB的斜率之积;
②判断直线AB与EQ是否平行?并说明理由.




(1)求椭圆的标准方程;
(2)若P为线段OD延长线上一点,直线PA交椭圆于另一点E,直线PB交椭圆于另一点Q.
①求直线PA与PB的斜率之积;
②判断直线AB与EQ是否平行?并说明理由.
已知椭圆
的离心率为
,直线
经过椭圆
的左焦点.
(1)求椭圆
的标准方程;
(2)若直线
与
轴交于点
,
、
是椭圆
上的两个动点,且它们在
轴的两侧,
的平分线在
轴上,
|,则直线
是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.




(1)求椭圆

(2)若直线











已知椭圆
的焦距为
,点
关于直线
的对称点在椭圆
上.

(1)求椭圆
的方程;
(2)如图,过点
的直线
与椭圆
交于两个不同的点
(点
在点
的上方),试求
面积的最大值;
(3)若直线
经过点
,且与椭圆
交于两个不同的点
,是否存在直线
(其中
),使得
到直线
的距离
满足
恒成立?若存在,求出
的值;若不存在,请说明理由.






(1)求椭圆

(2)如图,过点







(3)若直线










