刷题首页
题库
高中数学
题干
已知以椭圆
的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.
(1)求椭圆
的方程:
(2)若
是椭圆
上的动点,求
的取值范围;
(3)直线
:
与椭圆
交于异于椭圆顶点的
,
两点,
为坐标原点,直线
与椭圆
的另一个交点为
点,直线
和直线
的斜率之积为1,直线
与
轴交于点
.若直线
,
的斜率分别为
,
试判断
,是否为定值,若是,求出该定值;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-21 11:42:01
答案(点此获取答案解析)
同类题1
在平面直角坐标系中,已知椭圆两焦点坐标为
,
,椭圆
上的点到右焦点距离最小值为
.
(1)求椭圆
的方程;
(2)设斜率为-2的直线交曲线
于
、
两点,求线段
的中点
的轨迹方程;
(3)设经过点
的直线与曲线
相交所得的弦为线段
,求
的面积的最大值(
是坐标原点).
同类题2
已知点
A
(0,-2),椭圆
E
:
(
a
>
b
>0)的离心率为
,
F
是椭圆
E
的右焦点,直线
AF
的斜率为
,
O
为坐标原点.
(1)求
E
的方程;
(2)设过点
A
的动直线
l
与
E
相交于
P
,
Q
两点.当△
OPQ
的面积最大时,求
l
的方程.
同类题3
已知
为椭圆
的左、右焦点,
是椭圆上一点,若
,则
等于( )
A.
B.
C.
D.
同类题4
分别以双曲线
的焦点为顶点,以双曲线
的顶点为焦点作椭圆
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设点
的坐标为
,在
轴上是否存在定点
,过点
且斜率为
的动直线
交椭圆于
两点,使以
为直径的圆恒过点
,若存在,求出
的坐标;若不存在,说明理由.
同类题5
已知
F
1
、
F
2
分别是椭圆
C
:
的左焦点和右焦点,
O
是坐标系原点,且椭圆
C
的焦距为6,过
F
1
的弦
AB
两端点
A
、
B
与
F
2
所成△
ABF
2
的周长是
.
(Ⅰ)求椭圆
C
的标准方程;
(Ⅱ)已知点
P
(
x
1
,
y
1
),
Q
(
x
2
,
y
2
)是椭圆
C
上不同的两点,线段
PQ
的中点为
M
(2,1),求直线
PQ
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题