- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断方程是否表示椭圆
- 根据方程表示椭圆求参数的范围
- 根据椭圆方程求a、b、c
- 椭圆的方程与椭圆(焦点)位置的特征
- 求椭圆上点的坐标
- + 根据a、b、c求椭圆标准方程
- 根据椭圆过的点求标准方程
- 轨迹问题——椭圆
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
:
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
:
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.








(1)求椭圆

(2)若不经过点







已知椭圆
:
,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)设
是圆
上任意一点,由
引椭圆
的两条切线
,
,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.




(1)求椭圆

(2)设






如图,在平面直角坐标系xOy中,已知椭圆
的离心率为
,右焦点到直线
的距离为1.

求椭圆的标准方程;
若P为椭圆上的一点
点P不在y轴上
,过点O作OP的垂线交直线
于点Q,求
的值.










设椭圆
,离心率
,短轴
,抛物线顶点在原点,以坐标轴为对称轴,焦点为
,
(1)求椭圆和抛物线的方程;
(2)设坐标原点为
,
为抛物线上第一象限内的点,
为椭圆是一点,且有
,当线段
的中点在
轴上时,求直线
的方程.




(1)求椭圆和抛物线的方程;
(2)设坐标原点为







已知椭圆
的右焦点为
,A是椭圆短轴的一个端点,直线AF与椭圆另一交点为B,且
.
(1)求椭圆方程;
(2)若斜率为1的直线l交椭圆于C,D,且CD为底边的等腰三角形的顶点为
,求
的值.



(1)求椭圆方程;
(2)若斜率为1的直线l交椭圆于C,D,且CD为底边的等腰三角形的顶点为


如图,已知椭圆
上的点
到它的两焦点
的距离之和为4,
分别是它的左顶点和上顶点..

(I)求此椭圆的方程及离心率;
(II)平行于
的直线l与椭圆相交于
两点,求
的最大值及此时直线
的方程.





(I)求此椭圆的方程及离心率;
(II)平行于




设椭圆
的左右焦点分别为
,
,在椭圆L上的点
满足
,且
,
,
成等差数列.
(1)求椭圆L的方程;
(2)过点A作两条倾斜角互补的直线
,
,它们与椭圆L的另一个交点分别为B,C,试问直线BC的斜率是否是定值?若是,求出该斜率;若不是,请说明理由.








(1)求椭圆L的方程;
(2)过点A作两条倾斜角互补的直线

