刷题首页
题库
高中数学
题干
设椭圆
的左右焦点分别为
,
,在椭圆
L
上的点
满足
,且
,
,
成等差数列.
(1)求椭圆
L
的方程;
(2)过点
A
作两条倾斜角互补的直线
,
,它们与椭圆
L
的另一个交点分别为
B
,
C
,试问直线
BC
的斜率是否是定值?若是,求出该斜率;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-03 06:47:58
答案(点此获取答案解析)
同类题1
已知椭圆
的两焦点与短轴的一个顶点恰组成一个正三角形的三顶点,且椭圆
上的点到椭圆的焦点的最短距离为
,则椭圆
的方程为________.
同类题2
(1)焦点在y轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是
,并经过点
,求此双曲线的标准方程.
同类题3
如图所示,在平面直角坐标系
中,已知椭圆
:
(
),
,
,
,
是椭圆上的四个动点,且
,
,线段
与
交于椭圆
内一点
.当点
的坐标为
,且
,
分别为椭圆
的上顶点和右顶点重合时,四边形
的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)证明:当点
,
,
,
在椭圆上运动时,
(
)是定值.
同类题4
已知椭圆
:
的离心率为
,短轴长为2.
(1)求椭圆
的标准方程;
(2)若圆
:
的切线
与曲线
相交于
、
两点,线段
的中点为
,求
的最大值.
同类题5
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题