刷题首页
题库
高中数学
题干
如图,已知椭圆
上的点
到它的两焦点
的距离之和为4,
分别是它的左顶点和上顶点..
(I)求此椭圆的方程及离心率;
(II)平行于
的直线
l
与椭圆相交于
两点,求
的最大值及此时直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-03 01:18:14
答案(点此获取答案解析)
同类题1
已知椭圆
(
)经过
与
两点.
(1)求椭圆
的方程;
(2)过原点的直线
与椭圆
交于
两点,椭圆
上一点
满足
,求证:
为定值.
同类题2
在平面直角坐标系
中,
分别是椭圆
的左、右顶点(如图所示),点
在椭圆的长轴
上运动,且
.设圆
是以点
为圆心,
为半径的圆.
(1)若
,圆
和椭圆在第一象限的交点坐标为
,求椭圆的方程;
(2)若椭圆的离心率为
,过点
作互相垂直的两条直线,交椭圆于P,Q两点,若直线PQ过点M,求m的值(用含
的代数式表示);
(3)当圆
与椭圆有且仅有点
一个交点时,求
的运动范围(用含
的代数式表示).
同类题3
已知椭圆
:
的焦点分别为
,
,椭圆
的离心率为
,且经过点
,经过
,
作平行直线
,
,交椭圆
于两点
,
和两点
,
.
(1)求
的方程;
(2)求四边形
面积的最大值.
同类题4
已知椭圆
的短轴长等于焦距,椭圆C上的点到右焦点
的最短距离为
.(Ⅰ)求椭圆C的方程;(Ⅱ)过点
且斜率为
的直线
与
交于
、
两点,
是点
关于
轴的对称点,证明:
三点共线.
同类题5
已知椭圆
经过点
,
的四个顶点围成的四边形的面积为
.
(1)求
的方程;
(2)过
的左焦点
作直线
与
交于
、
两点,线段
的中点为
,直线
(
为坐标原点)与直线
相交于点
,是否存在直线
使得
为等腰直角三角形,若存在,求出
的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆的离心率或离心率的取值范围