- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- + 圆锥曲线
- 曲线与方程
- 椭圆
- 双曲线
- 抛物线
- 直线与圆锥曲线的位置关系
- 圆锥曲线的统一定义
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设抛物线
的准线与
轴交于
,抛物线的焦点
,以
为焦点,离心率
的椭圆与抛物线的一个交点为
;自
引直线交抛物线于
两个不同的点,设
.
(1)求抛物线的方程椭圆的方程;
(2)若
,求
的取值范围.










(1)求抛物线的方程椭圆的方程;
(2)若


如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.

(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x2+
=1(x<0)上的动点,求△PAB面积的取值范围.

(Ⅰ)设AB中点为M,证明:PM垂直于y轴;
(Ⅱ)若P是半椭圆x2+

如图,过抛物线M:y=x2上一点A(点A不与原点O重合)作抛物线M的切线AB交y轴于点B,点C是抛物线M上异于点A的点,设G为△ABC的重心(三条中线的交点),直线CG交y轴于点

(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;
(Ⅱ)求
的值.
A. |

(Ⅰ)设A(x0,x02)(x0≠0),求直线AB的方程;
(Ⅱ)求
