- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 直线与圆的实际应用
- 坐标法的应用——直线与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
是圆
内一点,直线
.
(1)若圆
的弦
恰好被点
平分,求弦
所在直线的方程;
(2)若过点
作圆
的两条互相垂直的弦
,求四边形
的面积的最大值;
(3)若
,
是
上的动点,过
作圆
的两条切线,切点分别为
.证明:直线
过定点.



(1)若圆




(2)若过点




(3)若







已知圆
的圆心为
,且截
轴所得的弦长为
.
(1)求圆
的方程;
(2)设圆
与
轴正半轴的交点为
,过
分别作斜率为
的两条直线交圆
于
两点,且
,试证明直线
恒过一定点,并求出该定点坐标.




(1)求圆

(2)设圆









已知圆
:
内有一动弦
,且
,以
为斜边作等腰直角三角形
,点
在圆外.
(1)求点
的轨迹
的方程;
(2)从原点
作圆
的两条切线,分别交
于
,
,
,
四点,求以这四点为顶点的四边形的面积
.







(1)求点


(2)从原点








为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图),它的附近有一条公路,从基地中心O处向东走1 km是储备基地的边界上的点A,接着向东再走7 km到达公路上的点B;从基地中心O向正北走8 km到达公路的另一点
现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE, DE的最短距离_________.
A. |
