- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与圆的位置关系
- + 由直线与圆的位置关系求参数
- 求直线与圆交点的坐标
- 直线与圆相交的性质——韦达定理及应用
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标xOy中,已知A(1,0),B(4,0),直线x-y+m=0上存在唯一的点P满足
,则实数m的取值集合是_____________.

若圆x2+y2-6x-2y+6=0上有且仅有两个点到直线x-y+a=0(a是实数)的距离为1,则a的取值范围是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知圆M:(x+cosq)2+(y-sinq)2=1,直线l:y=kx,下面四个命题:
(A)对任意实数k与q,直线l和圆M相切;
(B)对任意实数k与q,直线l和圆M有公共点;
(C)对任意实数q,必存在实数k,使得直线l与和圆M相切;
(D)对任意实数k,必存在实数q,使得直线l与和圆M相切.
其中真命题的代号是______________(写出所有真命题的代号).
(A)对任意实数k与q,直线l和圆M相切;
(B)对任意实数k与q,直线l和圆M有公共点;
(C)对任意实数q,必存在实数k,使得直线l与和圆M相切;
(D)对任意实数k,必存在实数q,使得直线l与和圆M相切.
其中真命题的代号是______________(写出所有真命题的代号).
若圆C:x2+y2−2ax+b=0上存在两个不同的点A,B关于直线x−3y−2=0对称,其中b∈N,则圆C的面积最大时,b=( )
A.3 | B.2 | C.1 | D.0 |