- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 圆的标准方程
- + 圆的一般方程
- 圆的一般方程与标准方程之间的互化
- 二元二次方程表示的曲线与圆的关系
- 求圆的一般方程
- 圆过定点问题
- 点与圆的位置关系
- 圆的几何性质
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系xOy中,已知椭圆C:
=1(a>b>0)的左右焦点分别为F1,F2,焦距为2,一条准线方程为x=2.P为椭圆C上一点,直线PF1交椭圆C于另一点Q.
(1)求椭圆C的方程;
(2)若点P的坐标为(0,b),求过点P,Q,F2三点的圆的方程;
(3)若
=
,且λ∈[
],求
的最大值.

(1)求椭圆C的方程;
(2)若点P的坐标为(0,b),求过点P,Q,F2三点的圆的方程;
(3)若




已知圆
,直线
,
.
(1)求证:对
,直线
与圆
总有两个不同的交点
;
(2)求弦
的中点
的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数
,使得圆
上有四点到直线
的距离为
?若存在,求出
的范围;若不存在,说明理由.



(1)求证:对




(2)求弦


(3)是否存在实数





已知关于x,y的方程x2+y2﹣4x+4y+m=0表示一个圆.
(1)求实数m的取值范围;
(2)若m=4,过点P(0,2)的直线l与圆相切,求出直线l的方程.
(1)求实数m的取值范围;
(2)若m=4,过点P(0,2)的直线l与圆相切,求出直线l的方程.