- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 圆的方程
- 圆的标准方程
- 圆的一般方程
- 点与圆的位置关系
- 圆的几何性质
- 直线与圆的位置关系
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知坐标平面上动点
与两个定点
,
,且
.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中轨迹为
,过点
的直线
被
所截得的线段长度为8,求直线
的方程.




(1)求点

(2)记(1)中轨迹为





在平面直角坐标系
中,直线
与圆
相切,圆心
的坐标为
.
(1)求圆
的方程;
(2)设直线
与圆
没有公共点,求
的取值范围;
(3)设直线
与圆
交于
、
两点,且
,求
的值.





(1)求圆

(2)设直线



(3)设直线






如果
是函数
图象上的点,
是函数
图象上的点,且
两点之间的距离
能取到最小值
,那么将
称为函数
与
之间的距离.按这个定义,函数
和
之间的距离是__________.












设
、
分别为椭圆
的左右顶点,设点
为直线
上不同于点
的任意一点,若直线
、
分别与椭圆相交于异于
、
的点
、
.
(1)判断
与以
为直径的圆的位置关系(内、外、上)并证明.
(2)记直线
与轴的交点为
,在直线
上,求点
,使得
.












(1)判断


(2)记直线




