- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 圆的方程
- 圆的标准方程
- 圆的一般方程
- 点与圆的位置关系
- 圆的几何性质
- 直线与圆的位置关系
- 圆与圆的位置关系
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
的三顶点坐标分别为
,
,
.
(1)求
的外接圆圆M的方程;
(2)已知动点P在直线
上,过点P作圆M的两条切线PE,PF,切点分别为E,
①记四边形PEMF的面积分别为S,求S的最小值;
②证明直线EF恒过定点.




(1)求

(2)已知动点P在直线

A. |
②证明直线EF恒过定点.
已知圆
,点
是直线
上的动点,过点
作圆
的切线
,
,切点分别为
,
.
(1)当
时,求点
的坐标;
(2)设
的外接圆为圆
,当点
在直线
上运动时,圆
是否过定点(异于原点
)?若过定点,求出该定点的坐标;若不过定点,请说明理由.









(1)当


(2)设






古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足
=2,则动点M的轨迹方程为()

A.(x﹣5)2+y2=16 | B.x2+(y﹣5)2=9 |
C.(x+5)2+y2=16 | D.x2+(y+5)2=9 |