题库 高中数学

题干

古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数kk>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()
A.(x﹣5)2+y2=16B.x2+(y﹣5)2=9
C.(x+5)2+y2=16D.x2+(y+5)2=9
上一题 下一题 0.99难度 单选题 更新时间:2019-12-01 04:12:16

答案(点此获取答案解析)