- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- + 圆与方程
- 圆的方程
- 直线与圆的位置关系
- 圆与圆的位置关系
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设圆C1:x2+y2﹣10x+4y+25=0与圆C2:x2+y2﹣14x+2y+25=0,点A,B分别是C1,C2上的动点,M为直线y=x上的动点,则|MA|+|MB|的最小值为( )
A.3![]() | B.3![]() | C.5![]() | D.5![]() |
已知圆C:x2+y2+2x﹣4y+3=0.
(1)若直线l:x+y=0与圆C交于A,B两点,求弦AB的长;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
(1)若直线l:x+y=0与圆C交于A,B两点,求弦AB的长;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.

(1)求a,b间的关系;
(2)求|PQ|的最小值.

(1)求a,b间的关系;
(2)求|PQ|的最小值.
在△ABC中,B(10,0),直线BC与圆Γ:x2+(y-5)2=25相切,切点为线段BC的中点.若△ABC的重心恰好为圆Γ的圆心,则点A的坐标为 .
设抛物线
的焦点为F,过F且倾斜角为45°的直线
与C交于A,B两点.

(1)求
的值;
(2)求过点A,B且与抛物线C的准线相切的圆的方程.



(1)求

(2)求过点A,B且与抛物线C的准线相切的圆的方程.
已知圆C的圆心在x轴上,且经过点
.
(1)求圆C的方程;
(2)若点
,直线l平行于OQ(O为坐标原点)且与圆C相交于M,N两点,直线QM、QN的斜率分别为kQM、kQN,求证:kQM+kQN为定值.

(1)求圆C的方程;
(2)若点
