- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- + 圆与方程
- 圆的方程
- 直线与圆的位置关系
- 圆与圆的位置关系
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义:圆心到直线的距离与圆的半径之比为直线关于圆的距离比
.
(1)设圆
求过
(2,0)的直线关于圆
的距离比
的直线方程;
(2)若圆
与
轴相切于点
(0,3)且直线
=
关于圆
的距离比
,求此圆的
的方程;
(3)是否存在点
,使过
的任意两条互相垂直的直线分别关于相应两圆
的距离比始终相等?若存在,求出相应的点
点坐标;若不存在,请说明理由.

(1)设圆




(2)若圆








(3)是否存在点




在如图所示的平面中,点
为半圆的直径
延长线上的一点,
=
=2,过动点
作半圆的切线
,若
=
,则△
的面积的最大值为______________ .











已知直线
、
与曲线
分别相交于点
、
和
、
,我们将四边形
称为曲线
的内接四边形.
(1)若直线
和
将单位圆
分成长度相等的四段弧,求
的值;
(2)若直线
,
与圆
分别交于点
、
和
、
,求证:四边形
为正方形;
(3)求证:椭圆
的内接正方形有且只有一个,并求该内接正方形的面积.









(1)若直线




(2)若直线








(3)求证:椭圆
