刷题首页
题库
高中数学
题干
已知点
、点
及抛物线
.
(1)若直线
过点
及抛物线
上一点
,当
最大时求直线
的方程;
(2)
轴上是否存在点
,使得过点
的任一条直线与抛物线
交于点
,且点
到直线
的距离相等?若存在,求出点
的坐标;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-23 07:38:22
答案(点此获取答案解析)
同类题1
已知点
是直线
上的任意一点,对椭圆
上任意一点
,恒有
,则实数
的取值范围是__________.
同类题2
已知直线
与椭圆
切于点
,与圆
交于点
,圆
在点
处的切线交于点
,
为坐标原点,则
的面积的最大值为( )
A.
B.2
C.
D.1
同类题3
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“伴椭圆”,若椭圆
的一个焦点为
,其短轴上一个端点到
的距离为
.
(1)求椭圆
的方程;
(2)过点
作椭圆
的“伴随圆”
的动弦
,过点
、
分别作“伴随圆”
的切线,设两切线交于点
,证明:点
的轨迹是直线,并写出该直线的方程;
(3)设点
是椭圆
的“伴随圆”
上的一个动点,过点
作椭圆
的切线
、
,试判断直线
、
是否垂直?并说明理由.
同类题4
如果直线与椭圆只有一个交点,称该直线为椭圆的“切线”.已知椭圆
,点
是椭圆
上的任意一点,直线
过点
且是椭圆
的“切线”.
(1)证明:过椭圆
上的点
的“切线”方程是
;
(2)设
,
是椭圆
长轴上的两个端点,点
不在坐标轴上,直线
,
分别交
轴于点
,
,过
的椭圆
的“切线”
交
轴于点
,证明:点
是线段
的中点;
(3)点
不在
轴上,记椭圆
的两个焦点分别为
和
,判断过
的椭圆
的“切线”
与直线
,
所成夹角是否相等?并说明理由.
同类题5
顺次连接椭圆
的四个顶点恰好构成了一个边长为
且面积为
的菱形.
(1)求椭圆
的标准方程;
(2)设直线
与椭圆
相切于点
,过点
作
,垂足为
,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
直线与椭圆的位置关系
求椭圆的切线方程
抛物线中存在定点满足某条件问题