- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与方程
- 圆与方程
- 圆锥曲线
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
过原点作两条互相垂直的直线分别交抛物线
于
两点(
均不与坐标原点重合),已知抛物线的焦点
到直线
距离的最大值为3,则
( )






A.![]() | B.2 | C.3 | D.6 |
已知点
是抛物线
上的一点,过
作直线
的垂线,垂足为
,直线
经过原点,由
上的一点
向圆
引两条切线,分别切圆
于
,
两点,且
为直角三角形,则
的最小值是______.














给出下列命题,其中所有正确命题的序号是__________.
①抛物线
的准线方程为
;
②过点
作与抛物线
只有一个公共点的直线
仅有1条;
③
是抛物线
上一动点,以
为圆心作与抛物线准线相切的圆,则此圆一定过定点
.
④抛物线
上到直线
距离最短的点的坐标为
.
①抛物线


②过点



③




④抛物线



已知抛物线
的焦点为
,准线为
,抛物线
上存在一点
,过点
作
,垂足为
,使
是等边三角形且面积为
.
(1)求抛物线
的方程;
(2)若点
是圆
与抛物线
的一个交点,点
,当
取得最小值时,求此时圆
的方程.










(1)求抛物线

(2)若点






已知动圆过定点
,且在
轴上截得的弦长为4.
(1)求动圆圆心的轨迹
的方程;
(2)点
为轨迹
上任意一点,直线
为轨迹
上在点
处的切线,直线
交直线
于点
,过点
作
交轨迹
于点
,求
的面积的最小值.


(1)求动圆圆心的轨迹

(2)点












