- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 判断线面是否垂直
- + 证明线面垂直
- 补全线面垂直的条件
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点

如图,四棱锥P -ABCD的底面是矩形,侧面PAD是正三角形,
且侧面PAD⊥底面ABCD,E 为侧棱PD的中点.
(1)求证:PB//平面EAC;
(2)求证:AE⊥平面PCD;
(3)当

如图,某人打算做一个正四棱锥形的金字塔模型,先用木料搭边框,再用其他材料填充,已知金字塔的每一条棱和边都相等.

(1)求证:直线AC垂直于直线SD;
(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?

(1)求证:直线AC垂直于直线SD;
(2)若搭边框共使用木料24米,则需要多少立方米的填充材料才能将整个金字塔内部填满?
如图,在四棱柱
中,侧棱
底面
,
,
,
,
,
,
,(
)

(1)求证:
平面
;
(2)若直线
与平面
所成角的正弦值为
,求
的值;
(3)现将与四棱柱
形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为
,写出
的解析式.(直接写出答案,不必说明理由)











(1)求证:


(2)若直线




(3)现将与四棱柱



如图,四棱锥
中,底面
为平行四边形,
底面
,
是棱
的中点,且
,
.

(1)求证:
平面
.
(2)求二面角
的大小;
(3)如果
是棱
的中点,求直线
与平面
所成角的正弦值.









(1)求证:


(2)求二面角

(3)如果




已知四棱锥
中,底面
为菱形,且
,
,过侧面
中线
的一个平面
与直线
垂直,并与此四棱锥的面相交,交线围成一个平面图形.
(1)画出这个平面图形,并证明
平面
;
(2)若
,求平面
与平面
所成的锐二面角的余弦值.








(1)画出这个平面图形,并证明


(2)若


