刷题首页
题库
高中数学
题干
已知四棱锥
中,底面
为菱形,且
,
,过侧面
中线
的一个平面
与直线
垂直,并与此四棱锥的面相交,交线围成一个平面图形.
(1)画出这个平面图形,并证明
平面
;
(2)若
,求平面
与平面
所成的锐二面角的余弦值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-11 06:18:36
答案(点此获取答案解析)
同类题1
如图,在四棱锥
P
-
ABCD
中,底面
ABCD
是正方形,侧面
PAD
⊥底面
ABCD
,且
PA
=
PD
=
AD
,
E
,
F
分别为
PC
,
BD
的中点.
求证:(1)
EF
∥平面
PAD
;
(2)
PA
⊥平面
PDC
.
同类题2
如图,已知四棱锥
,底面
为菱形,
,
,
平面
,
分别是
的中点。
(1)证明:
;
(2)若
为
的中点时,
与平面
所成的角最大,且所成角的正切值为
,求点
A
到平面
的距离。
同类题3
如图,三角形ABC中,AC=BC=
,四边形ABED是正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(1)求证:GF//底面ABC;
(2)求证:AC⊥平面EBC;
(3)若正方形ABED的边长为1,求几何体ADEBC的体积.
同类题4
如图,在正方形
中,点
分别是
的中点,将
分别沿
折起,使
两点重合于
点,设
与
交于点
,过点
作
,垂足为
.
(1)求证:
底面
;
(2)若四棱锥
的体积为
,求正方形
的边长.
同类题5
如图
,梯形
中,
,过
分别作
,
,垂足分别
,
,已知
,将梯形
沿
同侧折起,得空间几何体
,如图
.
1
若
,证明:
平面
;
2
若
,
,线段
上存在一点
,满足
与平面
所成角的正弦值为
,求
的长.
相关知识点
空间向量与立体几何
点、直线、平面之间的位置关系
直线、平面垂直的判定与性质
线面垂直的判定
证明线面垂直
空间垂直的转化