- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- + 多面体与球体内切外接问题
- 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图已知
是边长为
的正方形
的中心,点
分别是
的中点,沿对角线
把正方形
折成二面角
.

(1)证明:四面体
的外接球的体积为定值,并求出定值;
(2)若二面角
为直二面角,求二面角
的余弦值.









(1)证明:四面体

(2)若二面角


四棱锥P﹣ABCD中,△ABP是等边三角形,底面ABCD是矩形,二面角P﹣AB﹣C是直二面角,
,若四棱锥P﹣ABCD的外接球表面积是20π,则PA,BD所成角的余弦值为( )

A.![]() | B.![]() |
C.![]() | D.![]() |
设三棱柱ABC-A1B1C1的侧棱与底面垂直,∠BCA=90°,BC=CA=2,若该棱柱的所有顶点都在体积为
的球面上,则直线B1C与直线AC1所成角的余弦值为( ).

A.![]() | B.![]() | C.![]() | D.![]() |
如图两个同心球,球心均为点
,其中大球与小球的表面积之比为3:1,线段
与
是夹在两个球体之间的内弦,其中
两点在小球上,
两点在大球上,两内弦均不穿过小球内部.当四面体
的体积达到最大值时,此时异面直线
与
的夹角为
,则
( )












A.![]() | B.![]() | C.![]() | D.![]() |