- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 求组合多面体的表面积
- 求组合旋转体的表面积
- 形状相同的几何体表面积的比
- 根据表面积计算几何体的量
- + 多面体与球体内切外接问题
- 求组合体的体积
- 求旋转体的体积
- 形状相同的几何体体积的比
- 根据体积计算几何体的量
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
棱长为a的正四面体ABCD与正三棱锥
的底面重合,若由它们构成的多面体ABCDE的顶点均在一球的球面上,则正三棱锥
的内切球半径为( )


A.![]() | B.![]() |
C.![]() | D.![]() |
魏晋时期数学家刘徽在他的著作
九章算术注
中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为
:
若正方体的棱长为2,则“牟合方盖”的体积为







A.16 | B.![]() | C.![]() | D.![]() |
如果三棱锥
的底面
是正三角形,顶点
在底面
上的射影是
的中心,则这样的三棱锥称为正三棱锥.给出下列结论:
①正三棱锥所有棱长都相等;
②正三棱锥至少有一组对棱(如棱
与
)不垂直;
③当正三棱锥所有棱长都相等时,该棱锥内任意一点到它的四个面的距离之和为定值;
④若正三棱锥所有棱长均为
,则该棱锥外接球的表面积等于
.
⑤若正三棱锥
的侧棱长均为2,一个侧面的顶角为
,过点
的平面分别交侧棱
,
于
,
.则
周长的最小值等于
.
以上结论正确的是______(写出所有正确命题的序号).





①正三棱锥所有棱长都相等;
②正三棱锥至少有一组对棱(如棱


③当正三棱锥所有棱长都相等时,该棱锥内任意一点到它的四个面的距离之和为定值;
④若正三棱锥所有棱长均为


⑤若正三棱锥









以上结论正确的是______(写出所有正确命题的序号).