- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 球的体积的有关计算
- + 球的表面积的有关计算
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在三棱锥S﹣ABC中,SA⊥平面ABC,AB⊥BC,且SA=2,AB=1,BC
,则三棱锥S﹣ABC外接球的表面积为( )

A.4π | B.6π | C.8π | D.10π |
已知三棱锥A﹣BCD内接于球O,且AD=BC=3,AC=BD=4,AB=CD
,则三棱锥A﹣BCD的外接球的表面积是( )

A.38π | B.9π | C.76π | D.19π |
如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O.E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,△ABC中,
,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体

(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.


(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.
已知棱长为3的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是侧面DCC1D1内(包括边界)的一个动点,且满足∠APD=∠MPC.则当三棱锥P﹣BCD的体积最大时,三棱锥P﹣BCD的外接球的表面积为_____.