- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 空间几何体
- 点、直线、平面之间的位置关系
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥AB,PA⊥AD.

(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)已知PA=AD,点E在PD上,且PE:ED=2:1.
(ⅰ)若点F在棱PA上,且PF:FA=2:1,求证:EF∥平面ABCD;
(ⅱ)求二面角D﹣AC﹣E的余弦值.

(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)已知PA=AD,点E在PD上,且PE:ED=2:1.
(ⅰ)若点F在棱PA上,且PF:FA=2:1,求证:EF∥平面ABCD;
(ⅱ)求二面角D﹣AC﹣E的余弦值.
在正方体ABCD﹣A1B1C1D1中,O为线段AC的中点,点E在线段A1C1上,则直线OE与平面A1BC1所成角的正弦值的取值范围是( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,在四棱锥A﹣BCDE中,AD⊥平面BCDE,底面BCDE为直角梯形,DE∥BC,∠CDE=90°,BC=3,CD=DE=2,AD=4.则点E到平面ABC的距离为( )


A.![]() | B.![]() | C.![]() | D.2 |