- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
是奇函数,并且函数的图象经过点
.
(1)求实数
的值;
(2)
为函数
图像上的任一点,作
轴于
点,
轴于
点(
为坐标原点),求矩形
周长的最小值.


(1)求实数

(2)








已知一家公司生产某种品牌服装的年固定成本为
万元,每生产
千件需另投入
万元.设该公司一年内共生产该品牌服装
千件并全部销售完,每千件的销售收入为
万元,且
.
(1)写出年利润
(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)






(1)写出年利润


(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)