- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式求积的最大值
- + 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某森林出现火灾,火势正以每分钟100m2的速度顺风蔓延,消防站接到警报立即派消防员前去,在火灾发生后5分钟到达救火现场.已知消防队员在现场平均每人每分钟可灭火50m2,所消耗的灭火材料、劳务津贴等费用为每人每分钟125元,另附加每次救火所耗损的车辆、器械和装备等费用平均每人100元,而烧毁1m2森林损失费为60元.则应该派多少名消防队员前去救火,才能使总损失最少?并求最少损失费.
某单位用木料制作如图所示的框架,框架的下部是边长分别为
、
(单位:
)的矩形,上部是等腰直角三角形.要求框架围成的总面积为
.

(1)求
关于
的函数关系式;
(2)当
、
取何值时用料最省?(精确到
)





(1)求


(2)当



某小区要建一座八边形的休闲公园,如图所示,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为
的十字型地域,计划在正方形MNPQ上建一座花坛,造价为4200元/
,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/
,再在四个角上铺草坪,造价为80元/
受地域影响,AD的长最多能达到
,其余的边长没有限制.

(1)设总造价为S元,AD的长为xm,试求S关于x的函数关系式;
(2)当x取何值时,S最小,并求出这个最小值.






(1)设总造价为S元,AD的长为xm,试求S关于x的函数关系式;
(2)当x取何值时,S最小,并求出这个最小值.
一批救灾物资随26辆汽车从某市以
的速度送达灾区,已知运送的路线长
,为了安全起见,两辆汽车的间距不得小于
,那么这批物资全部到达灾区最少需要时间( )



A.![]() | B.![]() | C.![]() | D.![]() |
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点
为圆心的两个同心圆弧
、弧
以及两条线段
和
围成的封闭图形.花坛设计周长为30米,其中大圆弧
所在圆的半径为10米.设小圆弧
所在圆的半径为
米(
),圆心角为
弧度.

(1)求
关于
的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,当
为何值时,
取得最大值?











(1)求


(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为



某公司2009年9月投资14400万元购得上海世界博览会某种纪念品的专利权及生产设备,生产周期为一年.已知生产每件纪念品还需要材料等其它费用20元,为保证有一定的利润,公司决定纪念品的销售单价不低于150元,进一步的市场调研还发现:该纪念品的销售单价定在150元到250元之间较为合理(含150元及250元).并且当销售单价定为150元时,预测年销售量为150万件;当销售单价超过150元但不超过200元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1万件;当销售单价超过200元但不超过250元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1.2万件.
根据市场调研结果,设该纪念品的销售单价为
(元),年销售量为
(万件),平均每件纪念品的利润为
(元).
⑴求年销售量为
关于销售单价
的函数关系式;
⑵该公司考虑到消费者的利益,决定销售单价不超过200元,问销售单价
为多少时,平均每件纪念品的利润
最大?
根据市场调研结果,设该纪念品的销售单价为



⑴求年销售量为


⑵该公司考虑到消费者的利益,决定销售单价不超过200元,问销售单价


某单位建造一间地面面积为12
的背面靠墙的矩形小屋,房屋正面的造价为1200元/
,房屋侧面造价为800元/
,屋顶的总造价为5800元,如果墙面高为3m,且不计房屋背面费用,问怎样设计房屋能使得总造价最低,最低造价为多少元?



昌九高速公路起于江西省南昌市蛟桥收费站,终于九江市荷花垄收费站,全长122Km,假设某汽车从九江荷花垄进入高速公路后以不低于60Km/小时,且不高于120Km/小时的速度匀速行驶到南昌蛟桥收费站,已知汽车每小时的运输成本
(以元为单位)由固定部分和可变部分组成,固定部分为200元,可变部分与速度的平方成正比,当汽车以最快速度行驶时,每小时的运输成本为488元,若使汽车的全程运输成本最低,其速度为( )km / 小时

A.80 | B.90 | C.100 | D.110 |
据测算:2011年,某企业如果不搞促销活动,那么某一种产品的销售量只能是1万件;如果搞促销活动,那么该产品销售量(亦即该产品的年产量)m万件与年促销费用x万元(x≥0)满足
(k为常数).已知2011年生产该产品的前期投入需要8万元,每生产1万件该产品需要再投入16万元,企业将每件该产品的销售价格定为每件产品年平均成本的1.5倍(定价不考虑促销成本).
(1)若2011年该产品的销售量不少于2万件,则该产品年促销费用最少是多少?
(2)试将2011年该产品的年利润y(万元)表示为年促销费用x(万元)的函数,并求2011年的最大利润.

(1)若2011年该产品的销售量不少于2万件,则该产品年促销费用最少是多少?
(2)试将2011年该产品的年利润y(万元)表示为年促销费用x(万元)的函数,并求2011年的最大利润.
某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y万元与营运年数x(x∈N)的关系为y=-x2+12x-25,则每辆客车营运多少年报废可使其营运年平均利润最大( )
A.2 | B.4 | C.5 | D.6 |