- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式(均值定理)
- + 基本(均值)不等式求最值
- 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设点
,
的坐标分别为
,
,直线
和
相交于点
,且
和
的斜率之差是1.
(1)求点
的轨迹
的方程;
(2)过轨迹
上的点
,
,作圆
:
的两条切线,分别交
轴于点
,
.当
的面积最小时,求
的值.









(1)求点


(2)过轨迹










已知圆
,线段
、
都是圆
的弦,且
与
垂直且相交于坐标原点
,如图所示,设△
的面积为
,设△
的面积为
.

(1)设点
的横坐标为
,用
表示
;
(2)求证:
为定值;
(3)用
、
、
、
表示出
,试研究
是否有最小值,如果有,求出最小值,并写出此时直线
的方程;若没有最小值,请说明理由.












(1)设点




(2)求证:

(3)用






