- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 基本不等式(均值定理)
- + 基本(均值)不等式求最值
- 基本不等式求积的最大值
- 基本不等式求和的最小值
- 二次与二次(或一次)的商式的最值
- 条件等式求最值
- 基本不等式的恒成立问题
- 对勾函数求最值
- 容积的最值问题
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(湖南省株洲市2018届高三教学质量统一检测(一))已知直三棱柱
的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱
分别交于三点
,若
为直角三角形,则该直角三角形斜边长的最小值为




A.![]() | B.3 |
C.![]() | D.4 |
在直角坐标系
中,
,动点
满足:以
为直径的圆与
轴相切.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,直线
过点
且与
交于
两点,当
与
的面积之和取得最小值时,求直线
的方程.





(1)求点

(2)设点









已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)当m=n=1时,求f(x)的最小值;
(2)若f(x)的最小值为2,求证
.
(1)当m=n=1时,求f(x)的最小值;
(2)若f(x)的最小值为2,求证

佳木斯一中从高二年级甲、乙两个班中各选出7名学生参加2017年全国高中数学联赛(黑龙江初赛),他们取得的成绩的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数
、
满足
,
,
成等差数列且
,
,
成等比数列,则
的最小值为( )











A.![]() | B.2 | C.![]() | D.8 |
某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则
的最小值为__________.

