- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- + 分组(并项)法求和
- 数列求和的其他方法
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于无穷数列{
}与{
},记A={
|
=
,
},B={
|
=
,
},若同时满足条件:①{
},{
}均单调递增;②
且
,则称{
}与{
}是无穷互补数列.
(1)若
=
,
=
,判断{
}与{
}是否为无穷互补数列,并说明理由;
(2)若
=
且{
}与{
}是无穷互补数列,求数列{
}的前16项的和;
(3)若{
}与{
}是无穷互补数列,{
}为等差数列且
=36,求{
}与{
}的通项公式.
















(1)若






(2)若





(3)若{






一青蛙从点
开始依次水平向右和竖直向上跳动,其落点坐标依次是
,(如图所示,
坐标以已知条件为准),
表示青蛙从点
到点
所经过的路程.

(1)若点
为抛物线
(
)准线上一点,点
均在该抛物线上,并且直线
经过该抛物线的焦点,证明
.
(2)若点
要么落在
所表示的曲线上,要么落在
所表示的曲线上,并且
,试写出
(不需证明);
(3)若点
要么落在
所表示的曲线上,要么落在
所表示的曲线上,并且
,求
的表达式.








(1)若点






(2)若点





(3)若点




