- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 数列的概念与简单表示法
- 等差数列
- 等比数列
- + 数列求和
- 倒序相加法求和
- 错位相减法求和
- 裂项相消法求和
- 分组(并项)法求和
- 数列求和的其他方法
- 数列的综合应用
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知数列
满足
,
,其中
.
(1)设
,求证:数列
是等差数列,并求出
的通项公式;
(2)设
,数列
的前
项和为
,是否存在正整数
,使得
对于
恒成立,若存在,求出
的最小值,若不存在,请说明理由.




(1)设



(2)设








古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.
某同学模仿先贤用石子摆出了如下图3的图形,图3中的2,5,7,9,…,这些数能够表示成梯形,将其称为梯形数.



(1)请写出梯形数的通项公式
(不要求证明),并求数列
的前
项和
;
(2)若
,数列
的前
项和记为
,求证:
.
某同学模仿先贤用石子摆出了如下图3的图形,图3中的2,5,7,9,…,这些数能够表示成梯形,将其称为梯形数.



(1)请写出梯形数的通项公式




(2)若





某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第
个图形包含
个小正方形.

(1)求出
,
,
,
并猜测
的表达式;
(2)求证:
.



(1)求出





(2)求证:
