- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一种掷硬币走跳棋的游戏:在棋盘上标有第1站、第2站、第3站、…、第100站,共100站,设棋子跳到第
站的概率为
,一枚棋子开始在第1站,棋手每掷一次硬币,棋子向前跳动一次.若硬币的正面向上,棋子向前跳一站;若硬币的反面向上,棋子向前跳两站,直到棋子跳到第99站(失败)或者第100站(获胜)时,游戏结束.
(1)求

;
(2)求证:数列
为等比数列;
(3)求玩该游戏获胜的概率.


(1)求



(2)求证:数列


(3)求玩该游戏获胜的概率.
实数a,b满足a•b>0且a≠b,由a、b、
、
按一定顺序构成的数列( )


A.可能是等差数列,也可能是等比数列 |
B.可能是等差数列,但不可能是等比数列 |
C.不可能是等差数列,但可能是等比数列 |
D.不可能是等差数列,也不可能是等比数列 |
已知等差数列
的通项公式为
,且
分别是等比数列
的第二项和第三项,设数列
满足
,
的前
项和为
.
(1)求数列
的通项公式;
(2)是否存在
,使得
,并说明理由
(3)求










(1)求数列

(2)是否存在


(3)求

设数列
共有
项,记该数列前
项
,
,…,
中的最大项为
,该数列后
项
,
,…,
中的最小项为
,
(
1,2,3,…,
).
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)若数列
是单调数列,且满足
,
,求数列
的通项公式;
(3)试构造一个数列
,满足
,其中
是公差不为零的等差数列,
是等比数列,使得对于任意给定的正整数
,数列
都是单调递增的,并说明理由.















(1)若数列



(2)若数列




(3)试构造一个数列






设数列
的前
项和为
,对于任意的
,都有
.
(1)求数列
的首项
及数列的递推关系式
;
(2)若数列
成等比数列,求常数
的值,并求数列
的通项公式;
(3)数列
中是否存在三项
、
、
,它们组成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.





(1)求数列



(2)若数列



(3)数列




如果数列
满足
=1,当
为奇数时,
;为偶数时,
,则下列结论成立的是( )





A.该数列的奇数项成等比数列,偶数项成等差数列 |
B.该数列的奇数项成等差数列,偶数项成等比数列 |
C.该数列的奇数项各项分别加![]() |
D.该数列的偶数项各项分别加![]() |