- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若函数
满足:集合
中至少存在三个不同的数构成等比数列,则称函数
是等比源函数.
(
)判断下列函数:①
;②
;③
中,哪些是等比源函数?(不需证明)
(
)判断函数
是否为等比源函数,并证明你的结论.
(
)证明:
,
,函数
都是等比源函数.



(




(


(




在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的
倍,则这个塔顶有( )盏灯

A.![]() | B.![]() | C.![]() | D.![]() |
设数列
的前
项和为
,对于
,
,其中
是常数.
(1)试讨论:数列
在什么条件下为等比数列,请说明理由;
(2)设
,且对任意的
,
有意义,数列
的前
项和为
.若
,求
的最大值.






(1)试讨论:数列

(2)设







