- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- + 等比数列的定义
- 等比数列的通项公式
- 等比数列的性质
- 等比数列的函数特性
- 等比数列的前n项和
- 等比数列前n项和的性质
- an与Sn的关系——等比数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点列
,
,其中
,
(
),
是线段
的中点,
是线段
的中点,…
是线段
的中点,…
(Ⅰ)写出
与
、
之间的关系式(
);
(Ⅱ)设
,计算
、
、
,由此推测数列
的通项公式,并加以证明.











(Ⅰ)写出




(Ⅱ)设





若数列各项均非零,且存在常数
,对任意
,
恒成立,则成这样的数列为“类等比数列”,例如等比数列一定为类等比数列,则:
(1)各项均非零的等差数列是否可能为“类等比数列”?若可能,请举例;若不能,说明理由;
(2)已知数列
为“类等比数列”,且
,是否存在常数
,使得
恒成立?
(3)已知数列
为“类等比数列”,且
,求
.



(1)各项均非零的等差数列是否可能为“类等比数列”?若可能,请举例;若不能,说明理由;
(2)已知数列




(3)已知数列



朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为
,第七个音的频率为
,则
=



A.![]() | B.![]() | C.![]() | D.![]() |
已知数列
的前
项和为
,数列
中,
,对任意正整数
(1)求数列
的通项公式;
(2)是否存在实数
,使得数列
是等比数列?若存在,请求出实数
及公比
的值,若不存在,请说明理由;






(1)求数列

(2)是否存在实数



